Búsqueda por:
546,196 artículos
Año:
2022
ISSN:
1696-5728, 1695-6133
Serra-Kiel, J.; Vicedo, V.; Baceta, J.I.; Bernaola, G.; Robador, A.
Universitat de Barcelona
Resumen
A taxonomic study of the Paleocene larger foraminifera from the Pyrenean basin has led to the description of sixty taxa including two new species: Alveolina korresensis and Valvulineria bacetai. In this work, we present a chronostratigraphic recalibration of the Paleocene Shallow Benthic Zones SBZ 1 to SBZ 4 based on correlation with calcareous nannofossil and planktic foraminifera biozones, all integrated within the stratigraphic framework of Paleocene platform to basin depositional sequences established for the whole Pyrenean domain. The samples were collected in autochtonous and parautochtonous deposits from ten key stratigraphic sections, representative of coastal to platform margin depositional settings. The results from two sections representing base of slope facies with intercalations of calcareous turbidites, which include penecontemporaneous platform-derived biota have been integrated in the study. The regional chronostratigraphic framework is derived from magneto-biochronological studies carried out in the Zumaia section, the global reference section for the Danian-Selandian and Selandian-Thanetian GSSPs. A new calibration of the Paleocene SBZs is proposed. The SBZ 1 is constrained to the first 1.09m.y. of the Paleocene; this first Paleogene biozone lacks distinct larger foraminiferal markers and thus is defined by an association of non-exclusive taxa composed of Valvulineria patalaensis, Stomatorbina? binkhorsti, Planorbulina? antiqua and Bangiana hanseni. The SBZ 2 now appears as the biozone encompassing most of the Danian stage (from ca. 64.9m.a. to 61.6m.a.), and is characterized by the association of Haymanella elongata, Haymanella paleocenica, Kayseriella decastroi, Rotospirella conica, Pyrenerotalia depressa, Elazigin dienii, Ornatononion moorkensii and Paralockhartia eos. The SBZ 2-SBZ 3 boundary coincides with the base of the Selandian stage (ca. 61.6m.a.). The SBZ 3 biozone is defined by the occurrence of Glomalveolina primaeva, Periloculina slovenica, Vania anatolica, Coskinon rajkae, Fallotella alavensis, Cribrobulimina carniolica, Miscellanea yvettae, Miscellanea juliettae, Miscellanites primitivus, Miscellanites minutus, Ranikothalia soldadensis, “Operculina” heberti and Discocyclina seunesi. The SBZ 3-SBZ 4 boundary is now ascribed to ca. 57.2m.a. The SBZ 4 biozone appears characterized by Glomalveolina levis, Alveolina korresensis, Hottingerina lukasi, Daviesina garumnensis, Assilina yvettae, Assilina azilensis and Nummulites catari. The SBZ 4-SBZ 5 boundary is placed at the Paleocene-Eocene boundary event (ca. 56.0m.a.).
|
Año:
2022
ISSN:
1696-5728, 1695-6133
Pueyo, Emilio L.; Rodríguez-Pintó, Adriana; Serra-Kiel, Josep; Barnolas, Antonio
Universitat de Barcelona
Resumen
Despite the large number of magnetostratigraphic studies in the South Pyrenean Basin aiming to calibrate the basin chronostratigraphy and the biostratigraphic scales, the South Eastern Jaca Basin remains unexplored from this perspective, and its relation with the Ainsa Basin is not fully understood. In this work we contribute with new magnetostratigraphic data from the 950m thick Las Bellostas section, located in the northern hinge of the Balzes anticline. Well-proven primary signal (positive fold test and two pseudo-antiparallel polarities) supported by numerous primary data in the surroundings allow us building a reliable local polarity sequence of eight magnetozones (from R1 to N4). Additionally, seven new biostratigraphic samples (Nummulites and Assilina) in the lower part of the section (marine environment) allows tightening the section to the Geomagnetic Polarity Time Scale (GPTS) and proposing a refined age model for the southeastern Jaca Basin. The section starts in the Boltaña Fm., of Cuisian age (Shallow Benthic Zone, SBZ11), is followed by a sedimentary gap from C22n to C20n as witnessed by biostratigraphic data (SBZ11 underneath the hiatus and SBZ16 just atop). The deltaic Sobrarbe Fm. can be tracked until the C19n (Late Lutetian). From this point (200m) until the top of the section (950m), at least, the entire C18n chron can be recognized within the molassic Campodarbe Fm. (C18n.2n-C18n.1r and C18n.1n) (Bartonian) equivalent to the West to the prodeltaic Arguis marls Fm. The Middle Cusian (SBZ11) to Middle Lutetian (SBZ15) stratigraphic hiatus is, in part, enhanced by the structural position at the hinge of the Balzes anticline. These new chronostratigraphic constraints help refining the W-E and N-S stratigraphic relationships in the eastern Jaca Basin and in the Ainsa Basin. This section also allows us to accurately refine the kinematics of the rotational activity in the eastern External Sierras. The important difference in magnetic declination along the section and neighboring paleomagnetic data from the Balzes anticline (from ≈70º clockwise at the base of the stratigraphic section to non-significant at the top) together with the new age model for the Eastern Jaca Basin help characterizing the rotational activity of the Balzes thrust sheet. The rotation took place between chrons C20r (Middle Lutetian; 45Ma) and C17 (Lower Priabonian 37-38Ma) in agreement to nearby structures (Boltaña, Picodel Aguila anticlines) but clearly diachronic to western ones (Santo Domingo anticline). Besides, the rotational activity seems to follow a linear and continuous pattern (velocity 9-11º/Ma, R: 0.83-0.96) in contrast to closer structures that show two distinct rotational velocities (i.e. Boltaña). These new data still let open the debate on the rotational kinematics along the South Pyrenean basal thrust.
|
Año:
2022
ISSN:
1696-5728, 1695-6133
Silva-Casal, Roi; Serra-Kiel, Josep; Rodríguez-Pintó, Adriana; L. Pueyo, Emilio; Aurell, Marc; Payros, Aitor
Universitat de Barcelona
Resumen
A systematic description of the Eocene larger foraminifera recorded in the South Pyrenean Basin (Sierras Exteriores) is presented herein. The large dataset provided in this work includes Nummulites and Alveolina species, along with a variety of other porcellaneous and hyaline taxa with lesser biostratigraphic relevance. Most of the larger foraminifera described in this work correspond to the Lutetian (SBZ13 to SBZ16 biozones) interval, but late Ypresian (SBZ11, Cuisian) and early Bartonian (SBZ17) shallow benthic zones have also been identified. A new species, Idalinaosquetaensis, is described. The systematic revision of middle to late Lutetian alveolines led to a reassessment of Alveolinafusiformis and the finding of two new precursor forms, described as Alveolina aff. fragilis and Alveolina aff. elongata. The new taxa fill in the gap existing so far in the middle to late Lutetian alveolinid biostratigraphy. Despite not being exclusive to SBZ16, these forms provide realiable biostratigraphic information in facies where Nummulites are not present. This realibility lies on the correlation of Nummulitesand Alveolina biostratigraphic markers in the same sections and their calibration to the global time scale through magnetostratigraphy. Magnetostratigraphic calibration of described taxa is provided, along with an update of the SBZ calibration to the Geological Time Scale (Gradstein et al., 2012).
|
Año:
2022
ISSN:
1696-5728, 1695-6133
Rodríguez-Pintó, Adriana; Serra-Kiel, Josep; Bernaola, Gilen; Barnolas, Antonio; Pueyo, Emilio L.; Tosquella, Josep; Arbués, Pau; Scholger, Robert
Universitat de Barcelona
Resumen
An integrated study including magnetostratigraphy, larger benthic foraminifera and calcareous nannofossil biostratigraphy is presented herein. This work was performed in shallow marine siliciclastics rich in larger foraminifera, around the Ypresian/Lutetian boundary in the Ésera valley (South-Central Pyrenees). Although the calcareous nannofossil content in the studied interval is low, not allowing a precise Y/L boundary to be recognised, the taxa found are enough to support the chronostratigraphic attribution. Data obtained in the Ésera valley section has improved the knowledge of larger benthic foraminifera (Nummulitesand Assilina) distribution through chron C21. SBZ 11 to SBZ 12 transition took place at the lowermost C21r, as shown in previous works. SBZ 12 assemblages extend into C21n, where the SBZ 12 to SBZ 13 boundary occurs. These data, obtained in shallow marine siliciclastic facies, with in situ fauna, results in a shift of the SBZ 12/SBZ 13 boundary to the Lower Lutetian, younger than previously believed. Accordingly, the Ypresian/Lutetian boundary occurs in SBZ 12.
|
Año:
2022
ISSN:
1696-5728, 1695-6133
Seyitoglu, Gurol; Aktug, Bahadir; Esat, Korhan; Kaypak, Bulent
Universitat de Barcelona
Resumen
This paper aims to present a new neotectonic perspective concordant with the seismic activities in Turkey and surrounding regions. The neotectonic structures have been re-evaluated mainly by using focal mechanism solutions and high-resolution satellite (Google Earth) images. The Southeast Anatolian Wedge explains thrust/blind thrust and asymmetrical folding relationship in SE Turkey, Syria, and Northern Iraq. The neotectonic structures of the Turkish-Iranian Plateau are enlightened by the rhomboidal cell model which creates a base to determine multiple intersection points between the region-wide left- and right-lateral shear zones. The releasing stepover between the North Anatolian Fault Zone and Southeast Anatolian-Zagros Fault Zone plus their connections with the Northeast Anatolian Fault Zone and the East Anatolian Fault Zone are described in a more meaningful way with the Anatolian Diagonal concept. It also clarifies the role of left-lateral shear zone in the west-southwest movement of Anatolian plate and its relationship with the Aegean and Cyprus arcs. A neotectonic region under the influence of NW-SE contraction is determined between the North Anatolian, Eskişehir, and Kırıkkale-Erbaa fault zones in which the Elmadağ-Eldivan and Abdüsselam pinched crustal wedges and the Beypazarı Blind Thrust Zone are developed. A new route for the southern branch of the North Anatolian Fault Zone is determined between Bolu and Değirmenlik (Milos) Island in the Aegean Sea via Mudurnu, Bursa, Balıkesir, and İzmir. All main neotectonic structures mentioned in this paper are evaluated by the elastic dislocation modelling and new neotectonic provinces are suggested.
|
Año:
2022
ISSN:
1696-5728, 1695-6133
Charpentier, Vincent; Adnet, Sylvain
Universitat de Barcelona
Resumen
Here we describe a new elasmobranch assemblage consisting of isolated dental material from the Aquitanian near-shore marine deposits of the Shuwayr and Warak formations at Sharbithat, in eastern Sultanate of Oman. The faunal composition clearly indicates affinities to other early Miocene elasmobranch-bearing localities worldwide. This assemblage is predominantly composed of large and common pelagic sharks as well as teeth attributable to a new species of fantail stingray, Taeniurops tosii, as old as the oldest undisputable fossil records of Taeniurops. The study of this fossil assemblage presented here improves the knowledge of the ancient elasmobranchs that frequented the eastern Arabian coasts during the closure of the Neotethys and the birth of the Arabian Sea. DOI: 10.1344/GeologicaActa2022.20.2
|
Año:
2022
ISSN:
1696-5728, 1695-6133
Soler, Josep; Meng, Shuo; Moreno, Luis; Neretnieks, Ivars; Liu, Longcheng; Kekäläinen, Pekka; Hokr, Milan; Říha, Jakub; Vetešník, Aleš; Reimitz, Dan; Višňák, Jakub; Vopálka, Dušan; Kröhn, Klaus-Peter; Tachi, Yukio; Ito, Tsuyoshi; Svensson, Urban; Iraola, Aitor; Trinchero, Paolo; Voutilainen, Mikko; Deissmann, Guido; Bosbach, Dirk; Park, Dong Kyu; Ji, Sung-Hoon; Gvoždík, Libor; Milický, Martin; Polák, Michal; Gylling, Björn; Lanyon, Bill
Universitat de Barcelona
Resumen
This study shows a comparison and analysis of results from a modelling exercise concerning a field experiment involving the transport and retention of different radionuclide tracers in crystalline rock. This exercise was performed within the Swedish Nuclear Fuel and Waste Management Company (SKB) Task Force on Modelling of Groundwater Flow and Transport of Solutes (Task Force GWFTS).Task 9B of the Task Force GWFTS was the second subtask within Task 9 and focused on the modelling of experimental results from the Long Term Sorption Diffusion Experiment in situ tracer test. The test had been performed at a depth of about 410m in the Äspö Hard Rock Laboratory. Synthetic groundwater containing a cocktail of radionuclide tracers was circulated for 198 days on the natural surface of a fracture and in a narrow slim hole drilled in unaltered rock matrix. Overcoring of the rock after the end of the test allowed for the measurement of tracer distribution profiles in the rock from the fracture surface (A cores) and also from the slim hole (D cores). The measured tracer activities in the rock samples showed long profiles (several cm) for non- or weakly-sorbing tracers (Cl-36, Na-22), but also for many of the more strongly-sorbing radionuclides. The understanding of this unexpected feature was one of the main motivations for this modelling exercise. However, re-evaluation and revision of the data during the course of Task 9B provided evidence that the anomalous long tails at low activities for strongly sorbing tracers were artefacts due to cross-contamination during rock sample preparation. A few data points remained for Cs-137, Ba-133, Ni-63 and Cd-109, but most measurements at long distances from the tracer source (>10mm) were now below the reported detection limits.Ten different modelling teams provided results for this exercise, using different concepts and codes. The tracers that were finally considered were Na-22, Cl-36, Co-57, Ni-63, Ba-133, Cs-137, Cd-109, Ra-226 and Np-237. Three main types of models were used: i) analytical solutions to the transport-retention equations, ii) continuum-porous-medium numerical models, and iii) microstructure-based models accounting for small-scale heterogeneity (i.e. mineral grains, porosities and/or microfracture distributions) and potential centimetre-scale fractures. The modelling by the different teams led to some important conclusions, concerning for instance the presence of a disturbed zone (a few mm in thickness) next to the fracture surface and to the wall of the slim hole and the role of micro-fractures and cm-scale fractures in the transport of weakly sorbing tracers. These conclusions could be reached after the re-evaluation and revision of the experimental data (tracer profiles in the rock) and the analysis of the different sets of model results provided by the different teams.
|
Año:
2022
ISSN:
1696-5728, 1695-6133
spanish, spanish; Solá, Ana Rita; Bento dos Santos, Telmo; Amaral, João Lains; Crispim, Lourenço
Universitat de Barcelona
Resumen
This work assessed the age distribution of Cadomian/Pan-African orogenic events (550-590 and 605-790Ma, respectively) in several zones of Iberian Massif by means of detrital and inherited zircon analysis compilation. Detrital zircon age spectra show that throughout the late Neoproterozoic-to-Early Ordovician era (~120Ma sedimentary record), the main systematic peak occurs at ~610Ma, followed by peaks at typical Cadomian ages (~590-550Ma). Inherited zircons incorporated in Cambrian-to-Lower Ordovician igneous rocks show typical Cadomian ages (~590-550Ma) but, once again, a remarkably consistent Pan-African ~610Ma peak occurs. In accordance with compiled zircon data and taking into account the evidence of North African peri-cratonic inliers, Ediacaran (~610Ma) zircons incorporated in Paleozoic magmas provide indirect evidence of Pan-African magmatism, suggesting that these magmas and synorogenic sediments are likely to constitute the cryptic stratigraphic infrastructure of most of the Iberian Massif. The main source of ~610Ma inherited zircons may be the lateral chrono-equivalents of the Saghro and Bou Salda-M`Gouna Groups (Anti-Atlas, Morocco) and/or coeval igneous rocks from West African Craton or Trans-Sahara Belt, emplaced at a stratigraphic level below the late Ediacaran sediments of the Ossa Morena Zone and the Central Iberian Zone. Assuming that the Iberian crust is a fragment of the Pan-African orogen, a relative paleoposition situated between the West African Craton and the Trans-Saharan Belt during the Late Neoproterozoic is proposed. The closed-system behaviour of Stenian-Tonian detrital zircon ages in the Trans-Sahara Belt suggests that this mega-cordillera acted as a barrier, in paleogeographic terms, to separating the Sahara Metacraton from Iberia. In Iberia, the opening of the system to Stenian-Tonian detrital zircon during the Ordovician indicates that, at that time, the Trans-Saharan Belt had already become a vast peneplain, which favoured a large drainage system with a long-distance transport mechanism that fed the passive continental margins.
|
Año:
2022
ISSN:
1696-5728, 1695-6133
Handoyo, Handoyo; DeFelipe, Irene; Martín-Banda, Raquel; García-Mayordomo, Julián; Martí, David; Martínez-Díaz, José Jesús; Insua-Arévalo, Juan Miguel; Teixidó, Teresa; Alcalde, Juan; Palomeras, Imma; Carbonell, Ramón
Universitat de Barcelona
Resumen
The seismicity in the SE Iberian Peninsula is distributed parallel to the coast in a well-developed strike-slip fracture system known as the Eastern Betic Shear Zone (EBSZ). This work focuses on the characterization of the shallow subsurface structure of the Algezares-Casas Nuevas Fault, within the Carrascoy Fault System of the EBSZ. The Carrascoy Fault borders the Guadalentín Depression to the south, which is a densely populated area with extensive agricultural activity. Therefore, this faults system represents a seismic hazard with significant social and economic implications. We have constructed two velocity-depth models based on P-wave tomography and Multichannel Analysis of Surface Waves (MASW) acquired from seismic reflection data. The resulting velocity models have allowed us to interpret the first ~250m depth and have revealed: i) the thickness of the critical zone; ii) the geometry of the Algezares-Casas Nuevas Fault; iii) the depth of the Messinian/Tortonian contact and iv) the presence of blind thrusts and damage zones under the Guadalentín Depression. Our results have also helped us to estimate an apparent vertical slip rate of 0.66±0.06m/ky for the Algezares-Casas Nuevas Fault since 209.1±6.2ka. Our results provide a methodological and backflow protocol to study the shallow subsurface of active faults, complementing previous geological models based on paleoseismological trenches, and can be used to improve the seismic hazard assessment of tectonically active regions around the world.
|
Año:
2022
ISSN:
1696-5728, 1695-6133
Padel, Maxime; Clausen, Sébastien; Poujol, Marc; Alvaro Blasco, Jose Javier
Universitat de Barcelona
Resumen
Detrital zircon grains from Cambrian–Lower Ordovician sandstones and quartzites sampled in the Pyrenees were dated by LA-ICPMS in order to assess their provenance sources. Resulting age distributions are compared to other available datasets from neighbouring margins, such as Morocco, the Iberian Peninsula, southern France and Sardinia. Kolmogorov-Smirnov (K-S) test and Crystallization Age-Depositional Age (CA-DA) diagrams were used to compare zircon populations estimating their possible correlation with the arc/rift/drift geodynamic evolution of the northwestern Gondwana margin. During Terreneuvian times, zircon populations allowed the distinction of i) a southwesternmost edge (Anti-Atlas-Ossa-Morena Rift) mostly influenced by Panafrican and Anti-Atlasian sources (ca. 0.63–0.54), ii) a northeasternmost edge (Sardinia) recording the influence of the Saharan Metacraton and the Arabian Nubian Shield, with an distinct Stenian–Tonian shift (ca. 1.25–0.85Ga) and iii) an intermediate palaeogeographic transect, where lies the Central-Iberian, West Asturian-Leonese and Cantabrian Zones, the Montagne Noire and the Pyrenees sharing similar populations and a chronologically progressive influence from Anti-Atlasian/Panafrican to Saharan Metacraton/Arabian Nubian Shield sources. This gradual modification in zircon percentage populations supports similar trends based on climatically sensitive indicators, biogeographic patterns of Cambrian Epoch 2 archaeocyathan and microfossil assemblages, and laterally correlatable episodes of carbonate production, all of them pointing to a Cambrian setting for the Pyrenean Basin between the Montagne Noire (Occitan Domain) and the Sardinian margins of NW Gondwana. The Terreneuvian zircon patterns recorded in the Pyrenees gradually evolved from Cambrian Epoch 2 to Early Ordovician times, reflecting the geodynamic evolution from Panafrican and Cadomian arc-related to rift-dominant conditions. During Furongian and Ordovician times, the relative percentage of zircon populations led to a more spread age curve, characteristic of extensional settings and pointing to rift (passive margin) conditions.
|